Tag Archives: #IDSA

CAP vs. HCAP vs. HAP vs. VAP

This post is written by a guest writer, Jeff Pearson, PharmD. 

In 2016, the Infectious Diseases Society of America (IDSA) published updated guidelines for the treatment of hospital-acquired pneumonia (HAP) & ventilator-associated pneumonia (VAP).

The plan was to release new community-acquired pneumonia (CAP) guidelines shortly thereafter.

Those CAP guidelines have now been pushed back to be tentatively published in summer 2018.

This post is meant to cover some common misconceptions about the treatment of pneumonia and clinical pearls while we patiently await the release of the new guidelines.

Let’s start with the basics:

HCAP & CAP – those presenting to the hospital with pneumonia
HAP & VAP – those that developed pneumonia >48 hours after admission to the hospital or mechanical ventilation, respectively.

CAP vs HCAP vs HAP vs VAP

But I thought the term HCAP was gone…

While the 2016 guidelines no longer address HCAP, HCAP as an entity has not disappeared (despite what some may tell you). It will likely be discussed in the as-of-yet unreleased CAP guidelines. But in the meantime, feel free to use the algorithm presented above for guidance.

Previous guidelines from 2005 grouped HCAP in with HAP and VAP in terms of treatment. But since then, it’s been determined that not all HCAP patients require MRSA and Pseudomonas coverage. Many can be treated as typical CAP patients.

High-risk HCAP patients =

  • multiple risk factors for multi-drug resistant organisms (see green-box above)
  • require ICU admission to justify broad spectrum antibiotic treatment.

Treatment:

CAP/low risk HCAP
—–NO MRSA or Pseudomonas coverage
—–YES atypical pneumonia pathogens coverage (i.e. mycoplasma, legionella, chlamydia spp.)
Ex. Levofloxacin; ceftriaxone + azithromycin*

High-risk HCAP
—–YES MRSA and Pseudomonas coverage
—–YES atypical pneumonia pathogens coverage (i.e. mycoplasma, legionella, chlamydia spp.)
Ex. Vancomycin + cefepime + azithromycin*

HAP
—–YES MRSA and Pseudomonas coverage
—–Consider double pseudomonal coverage if patient is hemodynamically unstable
—–NO atypical pneumonia pathogen coverage
Ex. Vancomycin + cefepime*

VAP
—–YES MRSA and Pseudomonas coverage
—–Consider double pseudomonal coverage if patient is hemodynamically unstable
—–NO atypical pneumonia pathogen coverage
Ex. Vancomycin + cefepime + tobramycin*

*These are example regimens. Please reference your own institution’s pneumonia guidelines for additional information.

 

Duration of Treatment = 7 days!!!

* This can likely be even shorter in cases of CAP.
** From the IDSA: “There exist situations in which a shorter or longer duration of antibiotics may be indicated, depending upon the rate of improvement of clinical, radiologic, and laboratory parameters.” 2

TAKE-HOME POINTS:

  • HCAP is still an entity – but it has been separated from HAP
  • CAP and HCAP – pneumonia <48 hours into a hospital stay
    HAP and VAP – pneumonia >48 hours into a hospital stay
  • CAP and low risk HCAPNO need for MRSA and Pseudomonas coverage
    High risk HCAP, HAP, and VAPDO need MRSA and Pseudomonas coverage
  • Duration of treatment = 7 days

 

References:

  1. Mandell LA, Wunderink RG, Anzueto A, et al. Infectious Diseases Society of America/American Thoracic Society consensus guidelines on the management of community-acquired pneumonia in adults. Clin Infect Dis. 2007; 44:S27-S72
  2. Kalil AC, Metersky ML, Klompas M, et al. Management of adults with hospital-acquired and ventilator-associated pneumonia: 2016 clinical practice guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin Infect Dis. 2016; 63(5):e61-e111
  3. Dinh A, Ropers J, Davido B, et al. Effectiveness of three days of beta-lactam antibiotics for hospitalized community-acquired pneumonia: a randomized non-inferiority double-blind trial [abstract]. ECCMID Madrid, Spain, April 22, 2018.

Guest author: Jeff Pearson is currently a PGY-2 infectious diseases pharmacy resident at Beth Israel Deaconess Medical Center in Boston, Massachusetts. He also serves as an adjunct faculty member at MCPHS University, lecturing and facilitating in various courses. He received his Doctor of Pharmacy from Northeastern University in 2014. His main area of interest is antimicrobial stewardship and he will be a senior pharmacist in infectious diseases at Brigham and Women’s Hospital after completing his residency year in August 2018.

 

Peer-reviewed by Milana Bogorodskaya, MD

CNS penetration of antimicrobials

Have you ever noticed how the indicated dosages for antimicrobials increase for CNS infections? This is because antimicrobials have a difficult time penetrating the blood brain barrier and the blood-CSF barrier, leading to difficulty of some antimicrobials to achieve therapeutic concentration levels in the CSF to properly treat a CNS infection.

Overview-of-the-two-main-barriers-in-the-CNS-blood-brain-barrier-and-blood

(Bhaskar et al. 2010.)

Disclaimer: the penetration of antimicrobials into the CSF is much more complicated than three columns and a list of antibiotics. It’s been shown that levels of drugs differ between ventricular, cisternal, and lumbar CSF. Additionally, the treatment of CNS infections depends on more than just the CNS penetration of a certain antimicrobial, thus if any questions arise, please discuss with your ID consultants and ID pharmacists.

For the sake of this review, we will keep it simple.

Antimicrobials can be broken down into 3 rough
categories:

Excellent/Good penetration of the CSF Good penetration only in inflamed meninges Poor penetration of the CSF
Fluoroquinolones Glycopeptides (vancomycin) Beta-lactams3
TMP/SMX Macrolides (azithromycin) Aminoglycosides
Metronidazole Rifampin Tetracyclines (doxy, tigecycline)
Chloramphenicol Ethambutol Clindamycin4
Fosfomycin1 Daptomycin
Isoniazid Colistin
Pyrazinamide Fusion inhibitors (enfurvitide)
Zidovudine Tenofovir
5-flucytosine Amphotericin B5
Voriconazole/fluconazole Echinocandins
Pyrimethamine Itraconazole/posaconazole
Atovaquone?2
Albendazole >>> Praziquantel

1 only FDA-approved for UTI treatment
2 no studies have been published looking at CNS penetration; however has been used successfully in clinical CNS infections
3 overcome by increase in dosages – higher dosages of beta-lactams obtain adequate levels in the CSF and tend to be 1st line agents in bacterial meningitis due to their efficacy and bactericidal properties
4 however has been shown to effectively treat susceptible CNS infections
5 however clinical trials have shown good outcomes when used in treatment of CNS infections

*If the class of drug was not mentioned in this list, it is likely because no studies have been done to assess CNS penetration of that drug.

Why are beta-lactams recommended for empiric
bacterial meningitis treatment?  

Despite the poor CSF penetration, beta-lactams have the most research documenting successful treatment of community-acquired meningitis compared to other antibiotic classes.

  • When the beta-lactam dose is increased, CNS penetration increases.
  • Beta-lactams are well-tolerated even at high dosages
  • Ceftriaxone treats S. pneumoniae, N. meningitidis, H.influenzae, and many aerobic gram-negatives such as E.coli and K. pneumoniae.

*Vancomycin is added to empiric regimens to treat the ceftriaxone-resistant S. pneumoniae strains that have been seen in community-acquired meningitis.

empiric meningitis tx IDSA guidelines                                                            (IDSA practice guidelines for Bacterial Meningitis, 2004.)

TAKE HOME POINTS:

  • Not all antimicrobials penetrate the BBB. Take into account an antimicrobial’s CNS penetration properties when treating CNS infections
  • Beta-lactams are still 1st line therapy for empiric meningitis treatment due to their efficacy against the most common pathogens and ability to achieve high levels with increased doses of the medication
  • When treating CNS infections, deviation from the guidelines warrants involvement of the ID pharmacist and the ID consult team to ensure the best treatment regimen for the patient

 

 

References:

1. Bhaskar, S., Tian, F. et al. (2010). Multifunctional Nanocarriers for diagnostics, drug delivery and targeted treatment across blood-brain barrier: Perspectives on tracking and neuroimaging. Particle and fibre toxicology. 7(1)3. DOI: 10.1186/1743-8977-7-3.
2. Nau, R., Sorgel, F, and Eiffert, H. (2010). Penetration of Drugs through the Blood-Cerebrospinal fluid/Blood-Brain Barrier for the treatment of central nervous system infections. Clinical Microbiology Reviews. 23(4): 858-883. DOI: 10.1128/CMR.00007-10
3. Letendre, S. (2011). Central nervous system complications in HIV disease: HIV-associated neurocognitive disorder. Topics in antiviral medicine. 19(4): 137-142.
4. Marra, C. (2014). Central nervous system penetration of ARVs: Does it matter? [powerpoint]. Presented at Northwest Aids Education and Training Center on May 15th, 2014.
5. Cherubin, C.E., Eng, R.H, et al. (1989). Penetration of newer cephalosporins into cerebrospinal fluid. Review of Infectious Diseases.11(4):526-548.
6. Tunkel, A.R., Hartman, B.J, et al. (2004). Practice Guidelines for the management of bacterial meningitis. CID. 39:1267-1284.

Peer-reviewed by Jeffrey Pearson, 2nd year ID pharmacy resident